在三角形ABC中,AD,BE,CF是三角形的角平分线交于O点,OG⊥BC,求证:角BOD=角COG

在三角形ABC中,AD,BE,CF是三角形的角平分线交于O点,OG⊥BC,求证:角BOD=角COG

题目
在三角形ABC中,AD,BE,CF是三角形的角平分线交于O点,OG⊥BC,求证:角BOD=角COG
答案
证明:
因为△ABC中,AD,BE,CF是三角形的角平分线,交于O
所以,∠ABO=1/2∠ABC,∠BAO=1/2∠BAC,∠BCO=1/2∠BCA
因为∠ABC+∠BAC+∠BCA=180°
所以,∠ABO+∠BAO+∠BCO=90°……(1)
因为,OG⊥BC
所以∠COG+∠BCO=90°……(2)
所以,(1)(2)得∠ABO+∠BAO=∠COG
因为∠BOD=∠ABO+∠BAO
所以,∠BOD=∠COG
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.