二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.

二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.

题目
二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.
答案
实对称矩阵的属于不同特征值的特征向量正交
所以 (2,-1)^T 是A的属于特征值2的特征向量
令P=
1 2
2 -1
则有 P^-1AP = diag(1,2)
所以 A = Pdiag(1,2)P^-1 =
9/5 -2/5
-2/5 6/5
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.