lim(1/n的三次方+1)+(4/n的三次方+2)一直到+n的平方/n的三次方+n的极限
题目
lim(1/n的三次方+1)+(4/n的三次方+2)一直到+n的平方/n的三次方+n的极限
答案
设Sn = 1/(n³ + 1) + 4/(n³ + 2) + 9/(n³ + 3) + ...+ n²/(n³ + n) = Σ(k=1~n) k²/(n³ + k)
k²/(n³ + n) ≤ k²/(n³ + k) ≤ k²/n³
(1 + 4 + 9 + ...+ n²)/(n³ + n) ≤ Sn ≤ (1 + 4 + 9 + ...+ n²)/n³
lim(n-->∞) (1 + 4 + 9 + ...+ n²)/(n³ + n) = lim(n-->∞) (1/6)n(n+1)(2n+1)/(n³+n) = 1/3
lim(n-->∞) (1 + 4 + 9 + ...+ n²)/n³ = 1/6)n(n+1)(2n+1)/n³ = 1/3
∴lim(n-->∞) Sn = 1/3
==> lim(n-->∞) 1/(n³ + 1) + 4/(n³ + 2) + 9/(n³ + 3) + ...+ n²/(n³ + n) = 1/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点