设正方形ABCD的边CD的中点为E,F是CE的中点(图).求证:∠DAE=1/2∠BAF.

设正方形ABCD的边CD的中点为E,F是CE的中点(图).求证:∠DAE=1/2∠BAF.

题目
设正方形ABCD的边CD的中点为E,F是CE的中点(图).求证:∠DAE=
1
2
∠BAF
答案
证明:如图,作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,
所以FA=FH.
设正方形边长为a,在Rt△ADF中,
AF2=AD2+DF2=a2+(
3a
4
)
2
=
25
16
a2
所以AF=
5
4
a
=FH.
从而CH=FH-FC=
5
4
a
-
a
4
=a,
所以Rt△ABG≌Rt△HCG(AAS),GB=GC=DE=
1
2
a.
从而Rt△ABG≌Rt△ADE(SAS),
所以∠DAE=∠2=
1
2
∠BAF.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.