用基本不等式求最值

用基本不等式求最值

题目
用基本不等式求最值
已知x∈(0,∏/2),求函数f(x)=(1+cox2x+8sinx2)/sin2x的最小值
(sinx2是指sinx的平方)
答案
因x∈(0,∏/2)故0f(x)=(1+cox2x+8sin²x)/sin2x
=(1+2cos²x-1+8sin²x)/2sinxcosx
=(cos²x+4sin²x)/sinxcosx
=cosx/sinx+4sinx/cos
≥2根号下(cosx/sinx乘以4sinx/cos)
=4
当且仅当cosx/sinx=4sinx/cos
即cos²x=4sin²x
即sinx=√5/5时
有最小值4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.