如何推导“1方+2方+3方+……+n方=1/6n(n+1)(2n+1)”
题目
如何推导“1方+2方+3方+……+n方=1/6n(n+1)(2n+1)”
答案
1^2=1/6*1(2*1+1)(1+1)=1/6*6=1
1^2+2^2=1/6*(2*2+1)(2+1)=1/6*30=5
.
假设1方+2方+3方+……+N方=1/6n(2n+1)(n+1)
则
1^2+2^2+3^2+……+n^2+(n+1)^2
=1/6n(2n+1)(n+1)+(n+1)^2
=1/6(n+1)(2n^2+n+6n+6)
=1/6*(n+1)(2n+3)(n+2)
=1/6*(n+1)[2(n+1)+1][(n+1)+1]
假设成立
得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点