已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点P(x0,y0)(x0≠0)的切线方程为y-y0=2ax0

已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点P(x0,y0)(x0≠0)的切线方程为y-y0=2ax0

题目
已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点P(x0,y0)(x0≠0)的切线方程为y-y0=2ax0
:(I)由题意可设抛物线的方程为x2=-2py(p>0),
由过点p(x0,y0)(x0≠0)的切线方程为y-y0=2ax0(x-x0),得
∴y′|x=x0=-
x0p=2ax0,
因此p=-
12a.
第一问答案中∴y′|x=x0=-
x0p=2ax0,
答案
y '|x=x0= 中,x=x0 这几个符号是下标,表示函数求导后,把 x=x0 代入所求的切线斜率.
根据已知,切线斜率为 2ax0 ,而求导出来的结果是 x0p ,所以有 x0p=2ax0 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.