证明a^2+b^2-2ab ≥a^3+b^3+c^3-3abc

证明a^2+b^2-2ab ≥a^3+b^3+c^3-3abc

题目
证明a^2+b^2-2ab ≥a^3+b^3+c^3-3abc
答案
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]*0.5
没有其他条件能做出来吗?我只会做到这了
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.