首先可以判断f(x)为奇函数 因为f(-x)=-2x/(1+x^2)=-f(x),图形关于原点对称
f(0)=0
f’(x)=(2-2x^2)/(1+x^2)^2=2(1-x^2)/(1+x^2)^2
f’’(x)=4x(x^2-3)(x^2+1)/ (1+x^2)^4
(可以忽略那些恒大于0的等式,所以下面的我就不写那些了,只写与关键的拐点相关的等式,你写题目的时候不要忘记加上)
令f’(x)=0 解出x1=-1,x2=1 求得函数f(x)斜率为0两点(-1,-1),(1,1)
令f’’(x)=0 解出x3=-根号3,x4=根号3
对于f’(x)
(负无穷,-1)并(1,正无穷)上f’(x)<0 函数f(x)单调递减
(-1,1)上f’(x)>0函数f(x)单调递增
对于f’’(x)
(负无穷,负根号3)并(根号3,正无穷)f’’(x)>0 可知f’(x)为单调递增
(负根号3,根号3) f’’(x)<0 可知f’(x)为单调递减
分段考虑
1先求f(x)在负无穷上的极限 可求得为0
2 (负无穷,负根号3)上f’(x)<0 函数f(x)单调递减 ,f’’(x)>0 可知f’(x)为单调递增
f(x)单调递减形状为凸
3 (负根号3,-1) f’(x)<0 函数f(x)单调递减 f’’(x)<0 可知f’(x)为单调递减
f(x)单调递减形状为凹
4 (-1,0)f’(x)>0函数f(x)单调递增 f’’(x)<0 可知f’(x)为单调递减
f(x)单调递增形状为凹
可画出左边图形,再根据奇偶性画右半就可以了
(图形我尽力了,就这个程度了,如果有不懂得可以HI我)
© 2017-2019 超级试练试题库,All Rights Reserved.