大学概率题求解

大学概率题求解

题目
大学概率题求解
设二维随机变量(X,Y)d的概率密度为f(x,y)=1,(x,y)属于D,f(x,y)=0,(x
,y)不属于D.
其中D是y=x,y=-x,x=1所围成的区域.验证:X与Y是不相关的,但X与Y不独立.
答案
它的原理:对f(x,y)的联合概率密度分别关于x和y求积分,得到各自的密度函数.相关性是求x,y的协方差cov(x,y),独立性则是检测等式f(x,y)=f(x)f(y)是否成立.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.