关于数列的数学难题

关于数列的数学难题

题目
关于数列的数学难题
设{an}是由正数组成的等差数列,{bn}是由正数组成的等比数列,且a1=b1,若存在某个自然数m使得a2m+1=b2m+1,则必有( ).
(A)am+1>bm+1 (B)am+1≥bm+1
(C)am+1=bm+1 (D)am+1≤bm+1
答案
am+1=(a1+a2m+1)/2 bm+1=(b1*b2m+1)^1/2=(a1*a2m+1)^1/2
因为a^2+b^2>=2ab
所以a1+a2m+1>=2(a1*a2m+1)^1/2
所以选B
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.