高等数学(关于闭区间连续函数的性质)

高等数学(关于闭区间连续函数的性质)

题目
高等数学(关于闭区间连续函数的性质)
一、设k1,k2为任意正常数,函数f (x)在闭区间[a,b]上连续,x1,x2 为区间(a,b)内任意两点.证明:在(a,b) 内至少存在一点ξ ,使得
k1f(x1)+k2f(x2)=(k1+k2)f(ξ).
二、证明:若f (x) 是以2π 为周期的连续函数,则存在ξ ,使f (ξ +π ) = f (ξ ) .
答案
一.
设m和M分别为[x1,x2]上的最小值和最大值,
u =[k1f(x1)+k2f(x2)]/(k1+k2)=m,即m
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.