设向量a,b是不共线的两个非零向量,向量OM=m向量a,向量ON=n向量b,向量OP=α向量a β向量b,若M P N三点共线,求证:α/m β/n=1

设向量a,b是不共线的两个非零向量,向量OM=m向量a,向量ON=n向量b,向量OP=α向量a β向量b,若M P N三点共线,求证:α/m β/n=1

题目
设向量a,b是不共线的两个非零向量,向量OM=m向量a,向量ON=n向量b,向量OP=α向量a β向量b,若M P N三点共线,求证:α/m β/n=1
证明:∵M、P、N三点共线,
∴存在实数λ,使得
MP=λPN ,
∴OP=(OM+λON)/(1+λ)
=[m/(1+λ)]a+[λn/(1+λ)]b.
∵a、b不共线,
∴α=m/(1+λ),
β=λn/(1+λ)
∴α/m+β/n
=1/(1+λ)+λ/(1+λ)
=1.
OP=(OM+λON)/(1+λ)这一步是什么意思?α=m/(1+λ),β=λn/(1+λ) 为什么就直接相等了?
答案
M、P、N三点共线,即:MP、PN共线
即:MP=kPN
而:MP=OP-OM,PN=ON-OP
故:OP-OM=k(ON-OP)
即:OP=(OM+λON)/(1+k)-------这一步这样来的
=[m/(1+k)]a+[λn/(1+k)]b
即:αa+βb=[m/(1+k)]a+[kn/(1+k)]b
即:(α-m/(1+k))a+(β-kn/(1+k))b=0
a、b是不共线的非零向量,故:α-m/(1+k)=0,β-kn/(1+k)=0
即:α=m/(1+k),β=kn/(1+k)
即:α/m+β/n=1/(1+k)+k/(1+k)=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.