如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥

如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥

题目
如果a,b都属于正实数,而且ab_(a+b)=1,那a+b的取值范围是啥
答案
(a-1)(b-1)=2
由于a、b都是正实数,所以
a-1>-1,b-1>-1
乘积为2
所以,a-1与b-1不能是负数,
于是a-1与b-1是正数,
所以:
(a-1)+(b-1)≥2·根号【(a-1)(b-1)】=2·根号2
即:a+b≥2+2·根号2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.