设a,b,c,d均为实数,a^2+b^2=2,c^2+d^2=2,ac=bd,证明:a^2+c^2=2,B^2+d^2=2,ab=cd
题目
设a,b,c,d均为实数,a^2+b^2=2,c^2+d^2=2,ac=bd,证明:a^2+c^2=2,B^2+d^2=2,ab=cd
答案
a^2+b^2=2,c^2+d^2=2
设a=√2cosx b=√2sinx c=√2cosy d=√2siny
ac=bd
√2cosx √2cosy=√2sinx√2siny
2cosxcosy=2sinxsiny
2cos(x+y)=0
x+y=kπ+π/2
所以c=√2cosy=√2cos(kπ+π/2-x)=±√2sinx
d=√2siny=√2sin(kπ+π/2-x)=±√2cosx
所以a^2+c^2=2,B^2+d^2=2,ab=cd
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点