若矩阵At=-A,则称矩阵A为反对称矩阵,证明奇数阶反对称矩阵一定不是满秩矩阵.

若矩阵At=-A,则称矩阵A为反对称矩阵,证明奇数阶反对称矩阵一定不是满秩矩阵.

题目
若矩阵At=-A,则称矩阵A为反对称矩阵,证明奇数阶反对称矩阵一定不是满秩矩阵.
答案
|A|=|A^T|=|-A|
而具体展开为
-A=(-1)^n*A,n为奇数
从而|-A|=|A|=-|A|,即|A|=0,不是满秩矩阵
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.