从边长为2a的正方形的四角各截去一个边长为x的正方形,再折起来做成一个无盖的方底盒子,问x为何值时,盒子的容积最大?(用不等式解啊)
题目
从边长为2a的正方形的四角各截去一个边长为x的正方形,再折起来做成一个无盖的方底盒子,问x为何值时,盒子的容积最大?(用不等式解啊)
答案
V=x﹙2a-2x﹚²=4x﹙a-x﹚²
∵2x+﹙a-x﹚+﹙a-x﹚=2a﹙常数,与x大小无关﹚
∴2x=a-x 即x=a/3时,V=16a³/27 为容积最大值.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 在平面直角坐标系中,已知线段mn的两个端点的坐标分别是m(-4,-2),n(0,2)将直线mn平移后得到线段m1n
- 设Z=f(x,x/y),f有二阶连续偏导数,求az/ax,az/ay,az/axay
- 1的无穷大次幂型的极限怎么求
- x趋近于0,sin3x/sin2x=3/2,不理解,
- 从键盘输入两个整数,计算它们的商和余数,并输出.
- the mind needs exercise as well as the boby 翻译,
- 询问几个歇后语
- 5尺4寸是多高
- three monkeys hanging
- He likes swimming.She likes it,too.