a为n阶列向量,(a的转置)×a=1,A=E-a×(a的转置). 证明:①A2=A②A的行列式为0

a为n阶列向量,(a的转置)×a=1,A=E-a×(a的转置). 证明:①A2=A②A的行列式为0

题目
a为n阶列向量,(a的转置)×a=1,A=E-a×(a的转置). 证明:①A2=A②A的行列式为0
万请快马加鞭……
答案
A^2=(E-a*a^T)^2=E^2-Ea*a^T-a*a^TE+a*a^T*a*a^T=E-2a*a^T+a*a^T=E-a*a^T=A
A=E-a*a^T中,两边左乘a^T,右乘a,a^TAa=a^T*a-a^T*a*a^T*a=0,求行列式
得det(a^TAa)=0即detAdet(a^T*a)=0,detA=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.