如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC. (1)求证:△MAC是等腰三角形; (2)若AC为⊙O直径,求证:AC2=2AM•AB.
题目
如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.
(1)求证:△MAC是等腰三角形;
(2)若AC为⊙O直径,求证:AC
2=2AM•AB.
答案
证明:(1)∵弧AD=弧CB,
∴∠MCA=∠MAC.
∴△MAC是等腰三角形.
(2)连接OM,
∵AC为⊙O直径,
∴∠ABC=90°.
∵△MAC是等腰三角形,AM=CM,OA=OC,
∴MO⊥AC.
∴∠AOM=∠ABC=Rt△.
∵∠MAO=∠CAB,
∴△AOM∽△ABC.
∴
=∴AO•AC=AM•AB.
∴AC
2=2AM•AB.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点