设a.b都是有界集,证明a∪b也是有界集

设a.b都是有界集,证明a∪b也是有界集

题目
设a.b都是有界集,证明a∪b也是有界集
答案
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素.
在一个度量空间(X,ρ)中的集合A,如果A的直径D(A)是有限的:
D(A)=max{ρ(x,y)}≤M ,其中任意x,y∈A;
就称A为有界集,即A是有界的.换句话说:一个集合是有界的,当且仅当它被包含在一个半径有 限的开球内.
反证法
假设a∪b(设为C)为无界集
又因为a.b都是有界集
存在M,N>0
使得M>Max{|ai|},N>Max{|bi|},ai,bi为a,b中的元素
令P=Max{M,N}
对任取x属于C,有P>{|xi|}
与C无界矛盾
所以假设不成立
所以a∪b也是有界集
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.