(1)如图1,四边形ABCD中,AB=CB,ABC=60°,∠ADC=120°,请你猜想线段DA,DC之和与线段BD的数量关系,并证明你的结论; (2)如图2,四边形ABCD中,AB=BC,∠ABC=

(1)如图1,四边形ABCD中,AB=CB,ABC=60°,∠ADC=120°,请你猜想线段DA,DC之和与线段BD的数量关系,并证明你的结论; (2)如图2,四边形ABCD中,AB=BC,∠ABC=

题目
(1)如图1,四边形ABCD中,AB=CB,ABC=60°,∠ADC=120°,请你猜想线段DA,DC之和与线段BD的数量关系,并证明你的结论;
(2)如图2,四边形ABCD中,AB=BC,∠ABC=60°,若点P为四边形ABCD内一点,且∠APD=120°,请你猜想线段PA,PD,PC之和与线段BD的数量关系,并证明你的结论.
答案
(1)如图1,延长CD至E,使DE=DA.连接AC.
∵∠ADC=120°,
∴∠ADE=60°.
∵AD=DE,
∴△EAD是等边三角形.
∴AE=AE,∠DAE=60°.
∴AB=AC,∠ABC=60°,
∵∠BAD=60°+∠CAD,∠EAC=60°+∠CAD,
∴∠BAD=∠CAE.
∴△BAD≌△CAE.
故AD+CD=DE+CD=CE=BD.
(2)如图2,在四边形ABCD外侧作正三角形AB′D,连接AC,
那么△AB′D和△ABC都是等边三角形,
∴AB=AC,AB′=AD.
∵∠BAD=∠B′AC=60°+∠CAD,
∴△AB′C≌△ADB,得B′C=DB.
∵四边形AB′DP符合(1)中条件,
∴B′P=AP+PD.
连接B′C,
(ⅰ)若满足题中条件的点P在B′C上,
则B′C=PB′+PC,
∴B′′C=AP+PD+PC.
∴BD=PA+PD+PC.
(ⅱ)若满足题中条件的点P不在B′C上,
∵B′C<PB′+PC,
∴B′C<AP+PD+PC.
∴BD<PA+PD+PC.
综上,BD≤PA+PD+PC.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.