令x和y为Rn(欧式空间)中的向量,n>1.证明若A=x*yT(Y的转置),则A的行列式为0?该怎么证?

令x和y为Rn(欧式空间)中的向量,n>1.证明若A=x*yT(Y的转置),则A的行列式为0?该怎么证?

题目
令x和y为Rn(欧式空间)中的向量,n>1.证明若A=x*yT(Y的转置),则A的行列式为0?该怎么证?
答案
很简单啊,行列式为零的一种就是有两行是有倍数关系(第一行和第二行,x*y1 vs x*y2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.