第一题

第一题

题目
第一题
已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且在区间(π/6,π/3)上有最小值,无最大值求w的大小.
第二题
已知函数f(X)=sin(wx+b)(w>0,0≤b≤π)是R上的偶函数,其图像关于(3π/4,0)对称,且在区间[0,π/2]上是单调函数,求b和w的值.
第三题
设w>0若函数f(x)=2sinwx.在[-π/3,π/4]上单调递增求w的取值范围.
答案
第一题:
w=2/3.由已知两函数值相等带入f(x)中利用和差化积可得出w=2/3+k或w=6k.
有函数在给出区间上无最值可得出 0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.