求极限lim┬(x→0+)〖(tanx)^sinax 〗
题目
求极限lim┬(x→0+)〖(tanx)^sinax 〗
答案
ln[lim〖(tanx)^sinax 〗]=lim(ln〖(tanx)^sinax 〗)=lim[sinax ln(tanx)]
x→0时,tanx→0,sinax~ax,tanx~x
lim[sinax ln(tanx)] =lim[ax lnx]=lim[alnx^x]
又x→0时,x^x→1
所以 lim[alnx^x]=lim aln1=lim ln1^a
所以 lim〖(tanx)^sinax〗=1^a=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点