已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系

已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系

题目
已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系
答案
由已知,|A*|=0,A*(1,1,...,1)^T = 3(1,1,...,1)^T
所以 r(A*)=1
所以 r(A)=n-1
所以 AX=0 的基础解系含1个向量.
因为 AA*=|A|E=0
所以 3A(1,1,...,1)^T = AA*(1,1,...,1)^T = 0
所以 (1,1,...,1)^T 是AX=0 的基础解系
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.