在三角形ABC中,若sinAsinB=[(cosC/2)]^2,判断三角形形状
题目
在三角形ABC中,若sinAsinB=[(cosC/2)]^2,判断三角形形状
答案
C=180-A-B
C/2=90-(A+B)/2
cosC/2
=sin[(A+B)/2]
所以[(cosC/2)]^2={sin[(A+B)/2]}^2
=[1-cos(A+B)]/2
=sinAsinB
=[cos(A-B)-cos(A+B)]/2
所以cos(A-B)=1
因为0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点