如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF=1/2(AB+AC).
题目
如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF=
(AB+AC).
答案
证明:过B作BN∥AC交EM延长线于N点,∵BN∥AC,BM=CM,∴CF:BN=CM:BM,∠CFM=∠N,∴CF=BN,又∵AD∥ME,AD平分∠BAC,∴∠CFM=∠DAC=∠E,∴∠E=∠N,∴△BEN是等腰三角形,∴BE=BN=CF,∵∠EFA=∠CFM,∴∠E=∠E...
过B作BN∥AC交EM延长线于N点,根据平行线分线段成比例定理可得CF=BN,根据两直线平行,内错角相等可得∠CFM=∠N,再根据平行线的性质与角平分线的定义求出∠CFM=∠DAC=∠E,从而得到∠E=∠N,然后证明得到△BEN是等腰三角形,再根据平行线的性质求出∠E=∠EFA,根据等角对等边的性质求出AE=AF,然后列式整理即可得证.
三角形中位线定理;等腰三角形的判定与性质.
本题考查了等腰三角形的判定与性质,角平分线的定义,两直线平行,内错角相等的性质,两直线平行,同位角相等的性质,作辅助线构造出等腰三角形是解题的关键,也是本题的难点.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点