如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G, (1)求证:点F是BD中点; (2

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G, (1)求证:点F是BD中点; (2

题目
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G,

(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.
答案
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO∴∠OCF=9...
(1)由已知中CH⊥AB于点H,DB为圆的切线,我们易得到△AEH∽AFB,△ACE∽△ADF,进而根据三角形相似,对应边成比例,根据E为CH中点,得到点F是BD中点;
(2)连接CB、OC,根据圆周定理的推论,我们易得在直角三角形BCD中CF=BF,进而求出∠OCF=90°,由切线的判定定理,得到CG是⊙O的切线;
(3)由由FC=FB=FE,易得FA=FG,且AB=BG,由切割线定理及勾股定理,我们可以求出AB的长,即圆的直径,进而得到圆的半径.

圆的切线的判定定理的证明;相似三角形的性质;与圆有关的比例线段.

本题考查的知识点是圆的切线的判定定理的证明,相似三角形的性质及与圆有关的比例线段,其中根据已知线段与求知线段的位置关系,分析后选取恰当的定理进行解答是解答本题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.