如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC. 求证:(1)∠AHD=∠AHE;(2)BH/BD=CH/CE.

如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC. 求证:(1)∠AHD=∠AHE;(2)BH/BD=CH/CE.

题目
如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.
求证:(1)∠AHD=∠AHE;(2)
BH
BD
CH
CE

答案
证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.(2)直角△AHB与直角△TDB有公共角,∴△AHB...
(1)先判断D,E,H在同一圆上,再用同弧所对的圆周角相等以及角平分线的性质定理证明∠AHD=∠AHE.
(2)用两角对应相等得到两对三角形相似,再用相似三角形的对应边的比相等进行证明.

相似三角形的判定与性质.

本题考查的是相似三角形的判定与性质,(1)根据圆的内容得到点D,E,H在同一个圆上,再用圆周角的性质证明两个角相等.(2)用相似三角形的判定定理判定两对三角形相似,然后用相似三角形的性质,对应边的比相等以及角平分线的性质定理进行证明.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.