已知关于x的不等式|x-1|+|x+1|<m有解,则m的取值范围是______.
题型:不详难度:来源:
已知关于x的不等式|x-1|+|x+1|<m有解,则m的取值范围是______. |
答案
当x≥1,原不等式变形为:x-1+x+1<m,解得x<m, ∴1<m,解得m>2; 当-1<x<1,原不等式变形为:1-x+x+1<m,得2<m; 当x≤-1,原不等式变形为:1-x-x-1<m,解得x>-m, ∴-m<-1,解得m>2; 所以m的取值范围是m>2. 故答案为m>2. |
举一反三
(1)计算:20120+-4×sin60° (2)解不等式:2(x-1)+3≤3(x+1). |
若对0<x<3上的一切实数x,不等式(m-2)x<2m-1恒成立,则实数m的取值范围是( ) |
最新试题
热门考点