如图,直线与轴相交于点A,与轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与轴交于点P,若△ABP的面积为,试求点P的坐标.

如图,直线与轴相交于点A,与轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与轴交于点P,若△ABP的面积为,试求点P的坐标.

题型:不详难度:来源:
如图,直线轴相交于点A,与轴相交于点B.

(1)求A,B两点的坐标;
(2)过B点作直线与轴交于点P,若△ABP的面积为,试求点P的坐标.
答案
(1)B(0,3)、A(﹣,0);(2)P点坐标为(1,0)或(﹣4,0).
解析

试题分析:(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;
(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到SABP=AP•OB=,则AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.
试题解析:(1)由x=得:y=3,即:B(0,3).
由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);
(2)由B(0,3)、A(﹣,0)得:OB=3,OA=
∵SABP=AP•OB=
AP=
解得:AP=
设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=
解得:m=1或﹣4,
∴P点坐标为(1,0)或(﹣4,0).

举一反三
甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半小时后返回A地.如果是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象.

(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
题型:不详难度:| 查看答案
四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
题型:不详难度:| 查看答案
如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.
题型:不详难度:| 查看答案
已知直线y=(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012=           
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.