有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。
(1)当为 秒时,边恰好经过点;当为 秒时,运动停止; (2)在平移过程中,设与重叠部分的面积为,请直接写出与的函数关系式,并写出的取值范围; (3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)
|