在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.(1

在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.(1

题型:不详难度:来源:
在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQBD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+


3
3
PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.
答案
(1)证明:∵∠A=90°∠ABE=30°,
∴∠AEB=60°.
∵EB=ED,
∴∠EBD=∠EDB=30°.
∵PQBD,
∴∠EQP=∠EBD.
∠EPQ=∠EDB.
∴∠EPQ=∠EQP=30°,
∴EQ=EP.
过点E作EM⊥QP垂足为M.则PQ=2PM.
∵∠EPM=30°,∴PM=


3
2
PE,PE=


3
3
PQ.
∵BE=DE=PD+PE,
∴BE=PD+


3
3
PQ.

(2)由题意知AE=
1
2
BE,
∴DE=BE=2AE.
∵AD=BC=6,
∴2AE=DE=BE=4.
当点P在线段ED上时(如图1),
过点Q做QH⊥AD于点H,则QH=
1
2
PQ=
1
2
x.
由(1)得PD=BE-


3
3
x,PD=4-


3
3
x.
∴y=
1
2
PD•QH=-


3
12
x2+x

当点P在线段ED的延长线上时(如图2),
过点Q作QH′⊥DA交DA延长线于点H′,
∴QH′=
1
2
x.
过点E作EM′⊥PQ于点M′,同理可得EP=EQ=


3
3
PQ,
∴BE=


3
3
PQ-PD,
∴PD=


3
3
x-4,
∴y=
1
2
PD•QH′=


3
12
x2-x


(3)连接PC交BD于点N(如图3).
∵点P是线段ED中点,
∴EP=PD=2,PQ=2


3

∵DC=AB=AE•tan60°=2


3

∴PC=


PD2+DC2
=4.
∴cos∠DPC=
PD
PC
=
1
2

∴∠DPC=60°.
∴∠QPC=180°-∠EPQ-∠DPC=90°.
∵PQBD,
∴∠PND=∠QPC=90°.
∴PN=
1
2
PD=1.
QC=


PQ2+PC2
=2


7

∵∠PGN=90°-∠FPC,∠PCF=90°-∠FPC,
∴∠PGN=∠PCF.
∵∠PNG=∠QPC=90°,
∴△PNG△QPC,
PG
QC
=
PN
PQ

∴PG=
1
2


3
×2


7
=


21
3

举一反三
方程
1
x
-2=x2-2x
实根的情况是(  )
A.有三个实根B.有两个实根C.有一个实根D.无实根
题型:不详难度:| 查看答案
抛物线的顶点为(3,3),且点(2,-2)在抛物线上,求抛物线的解析式.
题型:不详难度:| 查看答案
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(3,6)三点,且与y轴交于点E.(1)求抛物线的解析式;
(2)若点F的坐标为(0,-
1
2
),直线BF交抛物线于另一点P,试比较△AFO与△PEF的周长的大小,并说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知直线y=-


3
3
x+
2


3
3
交x轴于点C,交y轴于点A.等腰直角三角板OBD的顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B"处,如图B所示.
(1)求图A中的点B的坐标;
(2)求α的值;
(3)若二次函数y=mx2+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.