如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点

如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点

题型:不详难度:来源:
如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.
答案
(1)设直线BC的解析式为y=mx+n,
将B(5,0),C(0,5)两点的坐标代入,





5m+n=0
n=5
,解得





m=-1
n=5

所以直线BC的解析式为y=-x+5;
将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,





25+5b+c=0
c=5
,解得





b=-6
c=5

所以抛物线的解析式为y=x2-6x+5;

(2)设M(x,x2-6x+5)(1<x<5),则N(x,-x+5),
∵MN=(-x+5)-(x2-6x+5)=-x2+5x=-(x-
5
2
2+
25
4

∴当x=
5
2
时,MN有最大值
25
4


(3)∵MN取得最大值时,x=2.5,
∴-x+5=-2.5+5=2.5,即N(2.5,2.5).
解方程x2-6x+5=0,得x=1或5,
∴A(1,0),B(5,0),
∴AB=5-1=4,
∴△ABN的面积S2=
1
2
×4×2.5=5,
∴平行四边形CBPQ的面积S1=6S2=30.
设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.
∵BC=5


2

∴BC•BD=30,
∴BD=3


2

过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.
∵BC⊥BD,∠OBC=45°,
∴∠EBD=45°,
∴△EBD为等腰直角三角形,BE=


2
BD=6,
∵B(5,0),
∴E(-1,0),
设直线PQ的解析式为y=-x+t,
将E(-1,0)代入,得1+t=0,解得t=-1
∴直线PQ的解析式为y=-x-1.
解方程组





y=-x-1
y=x2-6x+5
,得





x1=2
y1=-3





x2=3
y2=-4

∴点P的坐标为P1(2,-3)(与点D重合)或P2(3,-4).
举一反三
如图,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
题型:不详难度:| 查看答案
抛物线y=-x2+2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点D,顶点为C
(1)求A、B、C、D各点坐标;
(2)求四边形ABCD的面积;
(3)抛物线上是否存在点P,使△PAB的面积是△ABC的面积的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
某玩具厂授权生产工艺品福娃,每日最高产量为30只,且每日生产的产品全部出售.已知生产x只福娃的成本为R(元),每只售价P(元),且R,P与x的表达式分别为R=50+3x,P=170-2x.当日产量为多少时,可获得最大利润?最大利润是多少?
题型:不详难度:| 查看答案
某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?
题型:不详难度:| 查看答案
已知如图,矩形OABC的长OA=


3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______;
(2)若P,A两点在抛物线y=-
4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.