甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第

甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第

题型:不详难度:来源:
甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.
请你根据提供的信息说明:
(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;
(2)第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由;
(3)哪一年(取整数)的规律(即总产量)最大?请说明理由.
答案
由题意可知,图甲图象经过(1,1)和(6,2)两点,
将两点代入y=ax+b得:





a+b=1
6a+b=2

解得:





a=0.2
b=0.8

从而求得其解析式为y=0.2x+0.8,
图乙图象经过(1,30)和(6,10)两点.
将两点代入y=kx+c得:





k+c=30
6k+c=30

解得:





k=-4
c=34

从而求得其解析式为y=-4x+34.
(1)当x=2时,y=0.2×2+0.8=1.2,
y=-4×2+34=26,
y×y=1.2×26=31.2.
所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.

(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),
可见第6年这个县的鳗鱼养殖业规划比第1年缩小了.

(3)设当第m年时的规模,即总出产是量为n,
那么n=y•y=(0.2m+0.8)(-4m+34)
=-0.8m2+3.6m+27.2
=-0.8(m2-4.5m-34)
=-0.8(m-2.25)2+31.25
因此,当m=2时,n最大值为31.2.
即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条.
举一反三
已知抛物线y=ax2-k+m与x轴交于A(1,0),B(x2,0),与y轴负半轴交于点C,AB•OC=6,求抛物线解析式.
题型:不详难度:| 查看答案
草莓是对蔷薇科草莓属植物的通称,属多年生草本植物,草莓的外观呈心形,鲜美红嫩,果肉多汁,含有特殊的浓郁水果芳香,草莓营养价值高,含丰富维生素C,有帮助消化的功效,与此同时,草莓还可以巩固齿龈,清新口气,润泽喉部.我市某草莓种植基地去年第x个月种植草莓的亩数y(亩),与x(1≤x≤12,且x为整数)之间的函数关系如表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

月份x123456789101112
13种植某数y6810121416161616161616
如图,已知二次函数y=ax2-bx-c的图象与x轴交于A、B两点,当时x=1,二次函数取得最大值4,且|OA|=-
1
n
+2,
(1)求二次函数的解析式.
(2)已知点P在二次函数的图象上,且有S△PAB=8,求点P的坐标.
已知如图,抛物线y=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.
(1)请求出点A坐标和⊙P的半径;
(2)请确定抛物线的解析式;
(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).
二次函数y=ax2的图象过(2,1),则二次函数的表达式为______.