解:(1)过A点作AG⊥DC,垂足为G,
∵AB∥CD,
∴∠BCD=∠ABC=90°,
∴四边形ABCG为矩形,
∴CG=AB=5,AG=BC=10,
∵tan∠ADG==2,
∴DG=5,
∴DC=DG+CG=10;
(2)∵DE=BF,∠FBC=∠CDE,BC=DC,
∴△DEC≌△BFC,
∴EC=CF,∠ECD=∠FCB,
∵∠BCE+∠ECD=90°,∠ECF=90°,
∴△ECF是等腰直角三角形;
(3)过F点作FH⊥BE,
∵BE⊥EC,CF⊥CE,CE=CF,
∴四边形ECFH是正方形,
∴FH=EC=6,
∵BE:EC=4:3,∠BEC=90°,
∴BC2=BE2+EC2,
∴EC=6,BE=8,
∴BH=BE-EH=2,
∴DE=BF=。
© 2017-2019 超级试练试题库,All Rights Reserved.