已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的

已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的

题型:不详难度:来源:
已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.

(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED   EC(填“”“”或“”)
(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?
(3)当⊙O过BC中点时(如图3),求CE长.
答案
(1)ED=EC;(2)成立;(3)3
解析

试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;
(2)证法同(1);
(3)根据直角三角形的性质结合圆的基本性质求解即可.
(1)连接OD

∵DE为⊙O的切线
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(2)连接OD

∵DE为⊙O的切线
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(3)CE=3.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
举一反三
如图,一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是
A.B.C.D.

题型:不详难度:| 查看答案
一个边长为4的等边三角形ABC的高与⊙O的直径相等,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长是:
A.B.C.2 D.3

题型:不详难度:| 查看答案
如图:等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2

(1)求证:四边形AO1BO2是菱形;
(2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2DO2
(3)在(2)的条件下,若,求的值.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC//OD,AB=2,OD=3,则BC的长为(   )
A.B.C.D.

题型:不详难度:| 查看答案
母线长为4,底面圆的直径为2的圆锥的侧面积是       .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.