解:(1)∵A点第一次落在直线y=x上时停止旋转,
∴OA旋转了45度.
∴OA在旋转过程中所扫过的面积为.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45度.
∴∠BMN=∠BNM.
∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,
∴△OAM≌△OCN.
∴∠AOM=∠CON.
∴∠AOM=(90°﹣45°)=22.5度.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5度.
(3)在旋转正方形OABC的过程中,p值无变化.
证明:延长BA交y轴于E点,
则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.
∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
© 2017-2019 超级试练试题库,All Rights Reserved.