为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时
题型:不详难度:来源:
为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:
(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯? (2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数. (3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数. |
答案
(1)100人闯红灯(2)9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°(3)众数为15人,中位数为20人 |
解析
解:(1)根据题意得:40÷40%=100(人), ∴这一天上午7:00~12:00这一时间段共有100人闯红灯。 (2)根据题意得:7﹣8点的人数为100×20%=20(人), 8﹣9点的人数为100×15%=15(人), 9﹣10点占=10%, 10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人)。 补全图形,如图所示:
9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°。 (3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人。 (1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数。 (2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点及10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数。 (3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可。 |
举一反三
某小组7名同学积极参加支援“希望工程” 的捐书活动,他们捐书的册数分别是(单位:本): 10,12,10,13,10,15,17,这组数据的众数和中位数分别是A.10,12 | B.10,13 | C.10,10 | D.17,10 |
|
某中学组织全校3200名学生进行了“法律法规”相关知识竞赛.为了解本次知识竞赛的成绩情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图.
分组
| 频数
| 频率
| 50.5~60.5
| m
| 0.05
| 60.5~70.5
| a
| b
| 70.5~80.5
| 80
| n
| 80.5~90.5
| 104
| 0.26
| 90.5~100.5
| 148
| 0.37
| 合计
|
| 1
|
请根据以上提供的信息,解答下列问题: (1)则a= ,b= ,并补全频数分布直方图; (2)上述学生成绩的中位数落在哪一组范围内? (3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校3 200名学生中约有多少名获奖? |
某小学某年级学生进行了体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:
(1)这次共抽取了多少名学生的一分钟跳绳测试成绩? (2)求第一组和第三组的频数; (3)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少? (4)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有______人。(直接写出答案) |
在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是 |
春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查.将调查结果整理后绘制成如图所示的不完整的条形统计图.其中最喜欢新闻类电视节目的人数占被抽取人数的l0%.请你根据以上信息回答下列问题:
(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图: (2)如果全校共有l 200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名? |
最新试题
热门考点