大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是1+2+3+…+n=12n(n+1),其中n是正整数.现在我们来

大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是1+2+3+…+n=12n(n+1),其中n是正整数.现在我们来

题型:不详难度:来源:
大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是1+2+3+…+n=
1
2
n(n+1)
,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?观察下面三个特殊的等式:
1×2=
1
3
(1×2×3-0×1×2)

2×3=
1
3
(2×3×4-1×2×3)

3×4=
1
3
(3×4×5-2×3×4)

将这三个等式的两边相加,可以得到1×2+2×3+3×4=
1
3
×3×4×5=20

根据上述规律,请你计算:1×2+2×3+…+n(n+1)=______;1×2×3+2×3×4+…+n(n+1)(n+2)=______.
答案
根据阅读材料中的例子得:1×2+2×3+…+n(n+1)
=
1
3
(1×2×3-0×1×2)+
1
3
(2×3×4-1×2×3)+…+
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]
=
1
3
n(n+1)(n+2);
依此类推:1×2×3=
1
4
(1×2×3×4-0×1×2×3),2×3×4=
1
4
(2×3×4×5-1×2×3×4),
∴1×2×3+2×3×4+…+n(n+1)(n+2)
=
1
4
(1×2×3×4-0×1×2×3)+
1
4
(2×3×4×5-1×2×3×4)+…+
1
4
[(n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]=
1
4
n(n+1)(n+2)(n+3).
故答案为:
1
3
n(n+1)(n+2);
1
4
n(n+1)(n+2)(n+3)
举一反三
表1、表2是按同一规律排列的两个方格数表,那么表2的空白格中应填的数是______.
表一:
题型:不详难度:| 查看答案
题型:重庆难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

2446
624
422
按一定的规律排列的一列数依次为:
1
2
1
3
1
10
1
15
1
26
1
35
┅┅,按此规律排列下去,这列数中的第7个数是______.
按规律填数:①-1,2,-3,4,-5,6,______;②1,
1
2
,3,
1
4
,5,______.
我们知道
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…根据上述规律,计算
1
1×2
+
1
2×3
+
1
3×4
+…
1
9×10
=______.
计算:(
1
100
-1)(
1
99
-1)(
1
98
-1)…(
1
4
-1)(
1
3
-1)(
1
2
-1)
=______.