设U=R,A={x|2<x<5},B={x|3≤x≤7},求A∪B,A∩(C∪B).
题型:解答题难度:一般来源:不详
设U=R,A={x|2<x<5},B={x|3≤x≤7},求A∪B,A∩(C∪B). |
答案
∵U=R,A={x|2<x<5},B={x|3≤x≤7}, ∴A∪B={x|2<x<5}∪{x|3≤x≤7}={x|2<x≤7}, A∩(CUB)={x|2<x<5}∩{x|x<3,或x>7}={x|2<x<3}. |
举一反三
已知M={0,1,2},N={x|x=2a,a∈M},则M∪N=( )A.{0} | B.{0,1} | C.{0,1,2} | D.{0,1,2,4} |
|
满足条件{2,5}∪S={2,3,5}的所有集合S的个数是( ) |
已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=( )A.{0} | B.{0,1} | C.{1,2} | D.{0,2} |
|
若集合A={0,1,2,3},B={1,2,4},则集合A∪B=( )A.{0,1,2,3,4} | B.{1,2,3,4} | C.{1,2} | D.{0} |
|
已知集合I={x|1<x<5,x∈N},集合A={2,3},则C1A=______. |
最新试题
热门考点