(理)解: (1)设0≤x1<x2≤1,则必存在实数tÎ(0,1),使得x2=x1+t, 由条件③得,f(x2)=f(x1+t)³f(x1)+f(t)-2, ∴f(x2)-f(x1)³f(t)-2, 由条件②得, f(x2)-f(x1)³0, 故当0≤x≤1时,有f(0)≤f(x)≤f(1). 又在条件③中,令x1=0,x2=1,得f(1)³f(1)+f(0)-2,即f(0)≤2,∴f(0)=2, 故函数f(x)的最大值为3,最小值为2. (2)解:在条件③中,令x1=x2=,得f()³2f()-2,即f()-2≤[f()-2], 故当nÎN*时,有f()-2≤[f()-2]≤[f()-2]≤···≤[f()-2]=, 即f()≤+2. 又f()=f(1)=3≤2+,所以对一切nÎN,都有f()≤+2. (3)对一切xÎ(0,1,都有.对任意满足xÎ(0,1,总存在n(nÎN),使得 <x≤, 根据(1)(2)结论,可知:f(x)≤f()≤+2, 且2x+2>2´+2=+2,故有. 综上所述,对任意xÎ(0,1,恒成立. |