直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为(  )A.3B.1C.-1D.-3

直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为(  )A.3B.1C.-1D.-3

题型:不详难度:来源:
直线y=kx+b与曲线y=ax2+2+lnx相切于点P(1,4),则b的值为(  )
A.3B.1C.-1D.-3
答案
∵点P(1,4)在曲线y=ax2+2+lnx上,
∴a+2=4,解得a=2,
由题意得,y′=2ax+
1
x
=4x+
1
x

∴在点P(1,4)处的切线斜率k=5,
把P(1,4)代入y=kx+b,得b=-1,
故选C.
举一反三
已知直线l:x-ny=0(n∈N*),圆M:(x+1)2+(y+1)2=1,抛物线φ:y=(x-1)2,又l与M交于点A、B,l与φ交于点C、D,求
lim
n→∞
|AB|2
|CD|2
题型:不详难度:| 查看答案
若数列{an}的首项为a1=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+cn=0的两根,其中0<|c|<1,当
lim
n→∞
(b1+b2+…+bn)≤3,求c的取值范围.
题型:不详难度:| 查看答案
已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2是a2与a3的等差中项,且
lim
n→∞
an
bn
=
1
2
,求极限
lim
n→∞
1
a1b1
+
1
a2b2
+…+
1
anbn
)的值.
题型:不详难度:| 查看答案
已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).
(1)求{bn}的通项公式;
(2)求
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)的值.
题型:不详难度:| 查看答案
设数列a1,a2,…,an,…的前n项的和Sn与an的关系是Sn=kan+1,(其中k是与n无关的常数,且k≠1).
(1)试写出用n,k表示的an的表达式;
(2)若
lim
n→∞
sn
=1,求k的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.