如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α

如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α

题型:不详难度:来源:
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度.
(2)求sinα的值.
答案
(1)14海里/小时   (2)
解析
(1)依题意,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.
在△ABC中,由余弦定理,得
BC2=AB2+AC2-2AB×AC×cos∠BAC
=122+202-2×12×20×cos120°=784.
解得BC=28.
所以渔船甲的速度为=14海里/小时.
(2)方法一:在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,
由正弦定理,得=.
即sinα===.
方法二:在△ABC中,因为AB=12,AC=20,BC=28,∠BCA=α,由余弦定理,得cosα=,即cosα==.
因为α为锐角,所以sinα===.
举一反三
己知A、B、C分别为△ABC的三边a、b、c所对的角,向量,且.
(1)求角C的大小:
(2)若sinA,sinC,sinB成等差数列,且,求边c的长.
题型:不详难度:| 查看答案
在钝角中,,则的面积为(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,要计算西湖岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两点,现测得,求两景点B与C的距离.

题型:不详难度:| 查看答案
中,,则               
题型:不详难度:| 查看答案
在△ABC中,,则(   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.