已知等腰直角△ABC的斜边AB长为2,以它的一条直角边AC所在直线为轴旋转一周形成一个几何体,则此几何体的侧面积为______.
题型:不详难度:来源:
已知等腰直角△ABC的斜边AB长为2,以它的一条直角边AC所在直线为轴旋转一周形成一个几何体,则此几何体的侧面积为______. |
答案
∵在等腰直角三角形ABC中,AB=2,BC=,AC=, 以它的一条直角边AC所在直线为轴旋转一周形成一个几何体是圆锥, ∴圆锥的底面半径为,底面周长=2π, ∴侧面积=×2π×2=2π. 故答案为:2π. |
举一反三
六棱台的上、下底面均是正六边形,边长分别是8cm和18cm,侧面是全等的等腰梯形,侧棱长为13cm,求它的表面积. |
如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a(a为常数). (Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
|
如图,三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2CM,则下面四个图象中大致描绘了三棱锥N-AMC的体积V与x变化关系(x∈(0,3])( )
|
设长方体的对角线的长度是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是( ) |
在体积为15的斜三棱柱ABC-A1B1C1中,S是C1C上的一点,S-ABC的体积为3,则三棱锥S-A1B1C1的体积为( )
|
最新试题
热门考点