如图,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=32,BC=12.椭圆G以A、B为焦点且经过点D.(Ⅰ)建立适当坐标系,求椭圆G的方程;(

如图,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=32,BC=12.椭圆G以A、B为焦点且经过点D.(Ⅰ)建立适当坐标系,求椭圆G的方程;(

题型:不详难度:来源:
如图,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD=
3
2
,BC=
1
2
.椭圆G以A、B为焦点且经过点D.
(Ⅰ)建立适当坐标系,求椭圆G的方程;
(Ⅱ)若点E满足


EC
=
1
2


AB
,问是否存在不平行AB的直线l与椭圆G交于M、N两点且|ME|=|NE|,若存在,求出直线l与AB夹角正切值的范围,若不存在,说明理由.
答案
(Ⅰ)如图,以AB所在直线为x轴,
AB中垂线为y轴建立直角坐标系,⇒A(-1,0),B(1,0).
设椭圆方程为
x2
a2
+
y2
b2
=1

x=c⇒y0=
b2
a






C=1
b2
a
=
3
2





a=2
b=


3

∴椭圆C的方程是:
x2
4
+
y2
3
=1

(Ⅱ)


EC
=
1
2


AB
⇒E(0,
1
2
)
,l⊥AB时不符;
设l:y=kx+m(k≠0),





y=kx+m
x2
4
+
y2
3
=1
⇒(3+4k2)x2+8kmx+4m2-12=0

M、N存在⇒△>0⇒64k2m2-4(3+4k2)•(4m2-12)>0⇒4k2+3≥m2
设M(x1,y1),N(x2,y2),MN的中点F(x0,y0
x0=
x1+x2
2
=-
4km
3+4k2

y0=kx0+m=
3m
3+4k2

|ME|=|NE|⇒MN⊥EF⇒
y0-
1
2
x0
=-
1
k
3m
3+4k2
-
1
2
-
4km
3+4k2
=-
1
k
⇒m=-
3+4k2
2

4k2+3≥(-
3+4k2
2
)2
,∴4k2+3≤4,
∴0<k2≤1,∴-1≤k≤1且k≠0.
∴l与AB的夹角的范围是(0,
π
4
]

举一反三
求下列圆锥曲线的标准方程
(1)以双曲线
y2
2
-x2=1
的顶点为焦点,离心率e=


2
2
的椭圆
(2)准线为x=
4
3
,且a+c=5的双曲线
(3)焦点在y轴上,焦点到原点的距离为2的抛物线.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.