以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数;(2) 记甲组

以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数;(2) 记甲组

题型:不详难度:来源:
以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(1)如果X=8,求乙组同学植树棵数的平均数;
(2) 记甲组四名同学为A1,A2,A3,A4,乙组四名同学为B1,B2,B3,B4,如果X=9,分别从甲、乙两组中随机选取一名同学,列举这两名同学的植树总棵数为19的所有情形并求该事件的概率.
答案
 (1) ;  (2) P(C)=.
解析

试题分析: (1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10.
所以平均数为;                 (4分)
(2)所有可能的结果有16个,它们是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A3,B2),(A3,B3),(A3,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4).             (8分)
用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为P(C)=.         (12分)
点评:典型题,统计中的抽样方法,频率直方图,平均数、方差计算,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。
举一反三
有一个容量为66的样本,数据的分组及各组的频数如下:
分组
[1.5,3.5)
[3.5,5.5)
[5.5,7.5)
[7.5,9.5)
[9.5,11.5)
频数
6
14
16
20
10
根据样本的频率分布估计,数据落在[5.5,9.5)的概率约是        .
题型:不详难度:| 查看答案
的平均数是,方差是,则另一组的平均数和方差分别是
A.B.C.D.

题型:不详难度:| 查看答案
在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的,且样本容量160,则中间一组的频数为
A.32B.0.2C.40D.0.25

题型:不详难度:| 查看答案
中国跳水队被誉为“梦之队”。如图是2012年在伦敦奥运会上,七位评委为某位参赛运动员打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均分为______,方差为______
题型:不详难度:| 查看答案
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
分组
频数
频率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合计
50
 
(2)补全频数条形图;

(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.