某射击运动员射击一次所得的环数与概率的关系如下表所示环数78910概率0.10.40.40.1

某射击运动员射击一次所得的环数与概率的关系如下表所示环数78910概率0.10.40.40.1

题型:不详难度:来源:
某射击运动员射击一次所得的环数与概率的关系如下表所示
答案
举一反三
环数78910
概率0.10.40.40.1
(1)记该运动员两次射击中至少有一次命中8环为事件A
该运动员两次射击中恰有一次命中8环的概率P1=2×0.4×0.6=0.48;
该运动员两次射击都命中8环的概率P2=0.4×0.4=0.16
∴P(A)=P1+P2=0.64;
(2)由已知得:P(ξ=17)=2×0.4×0.4+2×0.1×0.1=0.34
P(ξ=18)=2×0.4×0.1+0.4×0.4=0.24
P(ξ=19)=2×0.4×0.1=0.08
P(ξ=20)=0.1×0.1=0.01
∴P(ξ≥17)=P(ξ=17)+P(ξ=18)+P(ξ=19)+P(ξ=20)=0.67
袋中有10个红球和10个绿球,它们除颜色不同外,其它都相同.从袋中随机取2个球,互斥而不对立的事件是(  )
题型:不详难度:| 查看答案
题型:重庆模拟难度:| 查看答案
A.至少有一个红球;至少有一个绿球
B.至少有一个红球;都是红球
C.恰有一个红球;恰有两个绿球
D.至少有一个红球;都是绿球
某种项目的射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击,若第一次射击未命中,可以进行第二次射击,但目标已经在150米处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,已知射手甲在100m处击中目标的概率为
1
2
,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求这名射手在三次射击中命中目标的概率;
(2)求这名射手比赛中得分的均值.
袋中装有除颜色外完全相同的2个红球和2个白球,若从袋内任取2个球,则事件A:“至少有1个白球”的对立事件是(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.恰有1个白球B.至少有1个红球
C.都是红球D.都是白球
把圆周分成四等份,A是其中一个分点,动点P在四个分点上按逆时针方向前进.现在投掷一个质地均匀的正四面体,它的四个面上分别写有1、2、3、4四个数字.P从A点出发,按照正四面体底面上数字前进几个分点,转一周之前连续投掷.求点P恰好返回A点的概率.
一辆汽车的电路发生故障,电路板上共有10个二极管,只知道其中有两个是不合格,但不知道是哪两个. 现要逐个用仪器进行检测,但受于仪器的限制,最多能检测6个二极管,若将两个不合格的二极管全部查出即停止检测,否则一直检测到6个为止. 设ξ是检查二极管的个数.
(1)求ξ的分布列(结果用分数表示);
(2)求检查二极管不超过4个时,已查出两个不合格二极管的概率;
(3)求ξ的数学期望.