从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;(Ⅱ)若抽取后不放回
题型:不详难度:来源:
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率; (Ⅱ)若抽取后不放回,设抽完红球所需的次数为s4,求s4的分布列及期望. |
答案
(Ⅰ)抽取一次取到红球的概率为, ∴抽取3次恰好有两次取到红球的概率为: P=()2()=. (Ⅱ)由题设知s4的可能取值为2,3,4,5, P(s4=2)==, P(s4=3)==, P(s4=4)==, P(s4=5)==, ∴s4的分布列为:
s4 | 2 | 3 | 4 | 5 | P | | | | |
举一反三
从装有3个红球,2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X的概率分布为 ______. | 甲、乙两人在罚球线互不影响地投球,命中的概率分别为与,投中得1分,投不中得0分. (1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望; (2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率. | 某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,设取出的3箱中,第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)在取出的3箱中,若该用户从第三箱中有放回的抽取3次(每次一件),求恰有两次抽到二等品的概率; (2)在取出的3箱中,若该用户再从每箱中任意抽取2件产品进行检验,用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及数学期望. | 某车间在三天内,每天生产6件某产品,其中第一天、第二天、第三天分别生产出了2件、1件、1件次品,质检部门每天要从生产的6件产品中随机抽取3件进行检测,若发现其中有次品,则当天的产品不能通过. (1)求第一天的产品通过检测的概率; (2)记随机变量ξ为三天中产品通过检测的天数,求ξ的分布列及数学期望Eξ. | 因台风灾害,我省某水果基地龙眼树严重受损,为此有关专家提出两种拯救龙眼树的方案,每种方案都需分四年实施.若实施方案1,预计第三年可以使龙眼产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第四年可以使龙眼产量为第三年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案2,预计第三年可以使龙眼产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第四年可以使龙眼产量为第三年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第三年与第四年相互独立,令ξi(i=1,2)表示方案i实施后第四年龙眼产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列; (2)实施哪种方案,第四年龙眼产量超过灾前产量的概率更大? (3)不管哪种方案,如果实施后第四年龙眼产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大? |
最新试题
热门考点
|