某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖

某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖

题型:不详难度:来源:
某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖品总额超过3元即停止猜题,否则猜第三道题。假设某同学猜对A区的任意一道灯谜的概率为0.25,猜对B区的任意一道灯谜的概率为0.8,用表示该同学猜灯谜结束后所得奖品的总金额。
(1)若该同学选择先在A区猜一题,以后都在B区猜题,求随机变量的数学期望;
(2)试比较该同学选择都在B区猜题所获奖品总额超过3元与选择(1)中方式所获奖品总额超过3元的概率的大小。
答案
(1)随机变量的分布列为

0
2
3
4
5
P
0.03
0.24
0.01
0.48
0.24

(2)选择(1)中方式所获奖品总额超过3元的概率
所以该同学选择都在B区猜题所获奖品总额超过3元比选择(1)中方式所获奖品总额超过3元的概率要大。
解析

试题分析:(1)随机变量的分布列为

0
2
3
4
5
P
0.03
0.24
0.01
0.48
0.24

(2)该同学选择都在B区猜题所获奖品总额超过3元的概率
选择(1)中方式所获奖品总额超过3元的概率
所以该同学选择都在B区猜题所获奖品总额超过3元比选择(1)中方式所获奖品总额超过3元的概率要大。                      
点评:典型题,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.的计算能力要求较高。作为应用题,难度表示太大,理解题意是关键。
举一反三
在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.
(1)定义横、纵坐标为整数的点为“整点”. 在区域中任取3个“整点”,求这些“整点”中恰好有2个“整点”落在区域中的概率;
(2)在区域中每次任取一个点,连续取3次,得到3个点,记这3个点落在区域中的个数为,求的分布列和数学期望.
题型:不详难度:| 查看答案
某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
频数
40
20

10

已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润。
(Ⅰ)求上表中的值;
(Ⅱ)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及数学期望EY
题型:不详难度:| 查看答案
某人从标有1、2、3、4的四张卡片中任意抽取两张.约定如下:如果出现两个偶数或两个奇数,就将两数相加的和记为;如果出现一奇一偶,则将它们的差的绝对值记为,则随机变量的数学期望为        .
题型:不详难度:| 查看答案
在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:
 
科目甲
科目乙
总计
第一小组
1
5
6
第二小组
2
4
6
总计
3
9
12
现从第一小组、第二小 组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.
题型:不详难度:| 查看答案
设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以表示取出次品的个数,则的期望值=    
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.